Lecture Series – 4

Solving Algebraic Equations DC Circuit Analysis

Shameer Koya

Sets of Linear Equations

- $x_1 + 2x_2 + 3x_3 = 366$
- $4x_1 + 5x_2 + 6x_3 = 804$
- $7x_1 + 8x_2 + 9x_3 = 351$
- In matrix form
- 1
 2
 3
 X_1 366

 4
 5
 6
 X_2 =
 804

 7
 8
 0
 X_3 351
- This is in the form

$$A^* x = y$$

Hence $x = A^{-1} y$

Solving Linear Equations

3

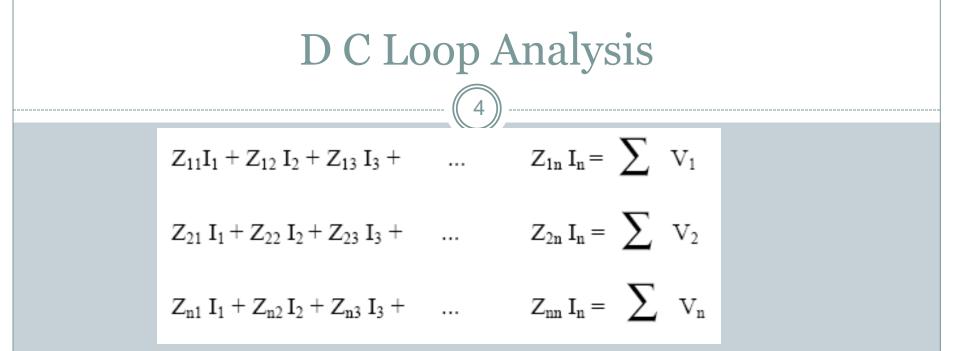
- The problem have a solution if rank of A and rank of augmented matrix, ([Ay]), are equal.
- *rank* (A) rank of a matrix A is the maximum number
- rank ([A y])

of linearly independent row vectors of A

• Then test condition number of A, which should be a small number (close to 1 is better)

(the condition number associated with the linear equation Ax = b gives a bound on how inaccurate the solution x will be after approximation)

- cond (A)
- Now the solution is
- $x = inv(A)^*y$ or $x = A \setminus y$

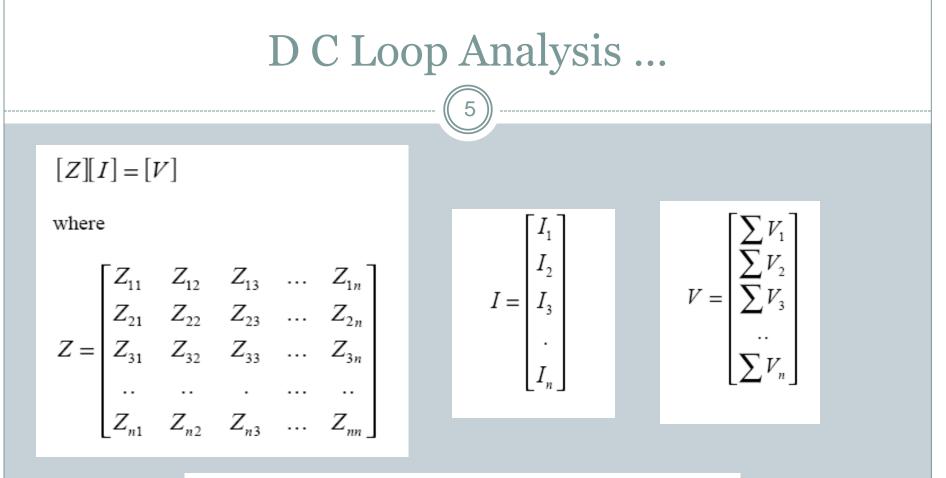


 $I_1, I_2, \dots I_n$ are the unknown currents for meshes 1 through n.

 Z_{11} , Z_{22} , ..., Z_{nn} are the impedance for each mesh through which individual current flows.

 Z_{ij} , j # i denote mutual impedance.

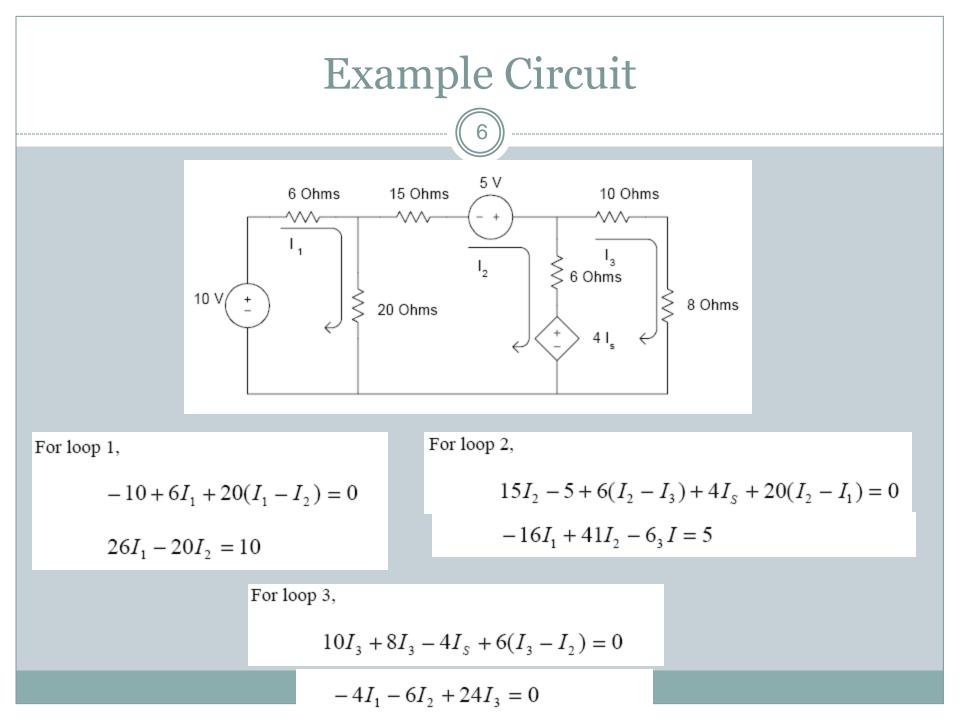
 $\sum V_x$ is the algebraic sum of the voltage sources in mesh x.



$$[I] = [Z]^{-1}[V]$$

In MATLAB, we can compute [I] by using the command

$$I = inv(Z) * V \qquad \qquad I = Z \setminus V$$



Example Circuit

7

• In matrix form:

$$\begin{bmatrix} 26 & -20 & 0 \\ -16 & 41 & -6 \\ -4 & -6 & 24 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 0 \end{bmatrix}$$

- Matlab Script:
 - Z = [26 −20 0; −16 41 −6; −4 −6 24]
 - V = [10; 5; 0]
 - o Rank (Z)
 - Rank ([ZV])
 - o Cond (A)

$$\circ$$
 I = Z\V

8

Do the exercises

Questions ??

Mid Lab: Week 8`