Lecture Series – 10

Solving RLC Series Parallel Circuits using SIMULINK

Shameer Koya

R L and C											
2											
Device	Current-voltage equation	Voltage-current equation									
Resistor	$I_{R}(t) = \frac{V_{R}(t)}{R}$ (Can change instantaneously <u>if</u> voltage can)	$V_{R}(t) = I_{R}(t) * R$ (Can change instantaneously <u>if</u> current can)									
Capacitor	$I_{C}(t) = C * \frac{dV_{C}(t)}{dt}$ (Can change instantaneously)	$V_{C}(t) = V_{C}(t=0) + \frac{1}{C} \int_{0}^{t} I_{C}(t) dt$ (Can <u>not</u> change instantaneously)									
Inductor	$I_{L}(t) = I_{L}(t=0) + \frac{1}{L} \int_{0}^{t} V_{L}(t) dt$ (Can <u>not</u> change instantaneously)	$V_L(t) = L * \frac{dI_L(t)}{dt}$ (Can change instantaneously)									

Series RLC Circuit

3

• Kirchhoff's voltage law $v_R + v_L + v_C = v(t)$

- Substituiting the voltage equations $Ri(t) + L\frac{di}{dt} + \frac{1}{C}\int_{-\infty}^{\tau=t} i(\tau) d\tau = v(t)$
- differentiating and dividing by L $\frac{d^2i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = 0$
- Can be expressed in the general form

$$\frac{d^{2}i(t)}{dt^{2}} + 2\alpha \frac{di(t)}{dt} + \omega_{0}^{2}i(t) = 0$$

$$\alpha = \frac{R}{2L} \quad \text{attenuation} \qquad \omega_{0} = \frac{1}{\sqrt{LC}} \quad \text{angular resonance frequency}$$

$$Ri(t) + L\frac{di}{dt} + \frac{1}{C}\int_{-\infty}^{\tau=t} i(\tau) d\tau = v(t)$$

• Change the R values and check the change in result.

8

• Make a simulink model of RLC Parallel circuit

Series parallel Circuit

9

RL and RC circuits in parallel
I = I₁ + I₂

Simpowersystem

SimPowerSystems is physical modeling tools for MATLAB Simulink to model electrical systems.

- Library for simpowersystem is available in Simulink Library Browser
- Alternate method:
- by entering the following command at the MATLAB® prompt.

>>powerlib

This command displays a Simulink window showing icons of different block libraries.

🚺 Libra	ry: pow	erlib							
File Ed	t View	Format	Help						
Electric Source	al 25		:	Power Electronics	Machines	Measurements	Application Libraries	Extras Extra Library	
					powergui				
SimPowerSystems 4.3 Copyright 1997-2006 TransEnergie Technologies, under sublicense from Hydro-Quebec and The MathWorks, Inc.									

Questions ??

